
COUNT MULTIVARIATE METRICS: ESTIMATE MODE COUNT AND DISTANCE1
UNCERTAINTY FROM PHONE SENSORS2

3
For Submission to Travel Survey Methods AEP254

5
Hui Xian Grace Lim6
University of Central Florida7
hxgrace@knights.ucf.edu8
ORCID: 0000-0002-3720-82819

10
Michael Allen11
National Renewable Energy Laboratory12
michael.allen@nrel.gov13

14
K. Shankari, Ph.D., Corresponding Author15
National Renewable Energy Laboratory16
k.shankari@nrel.gov17
ORCID: 0000-0002-7046-557018

19
20

Word Count: 6060 words + 5 table(s) × 250 = 7310 words21
22
23
24
25
26
27

Submission Date: August 11, 202328



Lim, Allen, Shankari 2

ABSTRACT1
To be informative, travel behavior metrics need to have not only measured values, but also the2
uncertainty of these values. Smartphone-based travel studies can use phone sensors and manual3
user labeling to collect trip data, but both of these are susceptible to error.4

This work investigates a method for estimating two metrics– the count of trips taken per5
transportation mode and the distance travelled per mode– and uses variance as a range of uncer-6
tainty for those estimates, with the goal that the uncertainty range should capture the actual value7
from the estimated values. Given a set of phone-based mode predictions and a column-normalized8
confusion matrix probabilities from an existing mode inference model, we use the closed form9
solutions for mean and variance of a multinomial distribution to determine the estimated values10
per mode and their corresponding variances.11

We tested this method on three different real world datasets which used phone-sensed data12
to predict trip modes and prompted users label trip modes, and found that our method works when13
probability distribution of predicted trips in the computation dataset and the evaluation dataset are14
very similar. If these distributions are too dissimilar, the range of uncertainty fails to capture actual15
values. Future work could involve using prior mode distributions to adjust these probabilities to be16
more similar, or applying a similar method to other metrics. This implies that, in the presence of a17
similar, labeled dataset, automated sensing outputs can be fully characterized, and can be used in18
complex decision making.19

20
Keywords: Statistics, Uncertainty, Smartphone App, Travel Survey Methods AEP2521
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INTRODUCTION1
Travel behavior data can inform decision making on many levels, from personal lifestyle choices2
to large-scale infrastructure and transportation planning. In the past, travel behavior has been3
collected through telephone surveys (1), vehicle GPS surveys (2), and web-based surveys (3).4

Because of their location tracking capabilities, smartphones can create travel diaries. Travel5
diaries document travel behavior as a set of trips between locations. Smartphones, however, are6
unable to directly collect information such as the modes of transportation used on a particular trip.7
As a result, many travel diary studies rely on participants to label trip modes, which is prone to8
incorrect or completely missing mode labels. To make up for this, travel modes can be inferred9
using smartphone-based data, but these inferred modes carry some associated uncertainty.10

de Jong et al. (4) describe the risks that come with overlooking uncertainty margins around11
a prediction. A decision could be predicted to be very successful, but that prediction could have a12
large amount of uncertainty, making the decision based on it more risky. Both a range of possible13
outcomes and the probabilities for those outcomes are needed to properly inform transportation14
infrastructure projects. The range of outcomes should capture the true value.15

This work proposes a process for estimating mode counts– the number of trips taken in16
each mode of transportation– and the distance travelled per mode, from a set of phone-sensed17
predictions, as well as the associated uncertainty of each measure, such that the actual values per18
mode fall within the range of uncertainty from the expected values. This process uses multinomial19
distributions to represent the spread of ground truth modes for each sensed mode. The closed form20
solution for the mean of a multinomial is used to find the expected values, and the closed form21
solution for the variance is used to find the uncertain range.22

We validate that multinomial distributions can indeed be used to characterize trip mode23
data, and discuss the effectiveness of our process, including the conditions required to get accu-24
rate resulting estimates and uncertainties. We then apply our methods to three different real-world25
datasets. We used open-source travel diary creation algorithms from the OpenPATH platform to26
generate these datasets, but our method works with any set of algorithms, regardless of classifica-27
tion methods.28

The main contributions of this paper are:29
1. developing a novel method to estimate the uncertainty of mode and distance counts30

given the output of a travel diary creation algorithm and a confusion matrix representing31
the quality of the algorithm,32

2. demonstrating that these can be computed efficiently using closed form solutions for33
multinomial distributions, and34

3. evaluating on three different real world datasets.35
The rest of the paper is structured as follows: the next section reviews related work (Sec-36

tion 3), and the following section outlines and validates our proposed method(Section 4). Then we37
describe our process for applying our methods to three datasets and discuss the results (Section 5).38
Finally, we present our conclusions and suggest future work (Section 6).39

RELATED WORK40
Travel diary platforms41
There is well-established literature and several implementations for travel diary data collection42
using smartphones.43

However, we are not aware of prior work that has considered all the components required44
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for fully characterizing travel behavior metrics in complex situations: (i) a data collection platform,1
(ii) automated mode inference, (iii) rigorous evaluation, and (iv) incorporating the results of that2
evaluation into the metrics calculations.3

There has been substantial work done in automated mode detection of uni-modal trip sec-4
tions using machine learning. For example, researchers have used decision trees (5) (6), Hidden5
Markov Models (7) (8), and neural networks (9) (10) for uni-modal mode detection, but most of6
them have not been incorporated into full-scale platforms.7

Data collection platforms such as the open-source Itinerum (11), ohmage (12), the Statis-8
tics Netherlands TABI application (13), automated mode inference and rely on users to provide9
trip mode information. Proprietary platforms such as FMS (14) and rMove (15) are less well-10
documented, so we have not been able to find evidence of automated mode inference, or error11
characteristics of post-processing algorithms in general.12

Some open-source platforms that have implemented automated mode detection have eval-13
uated their algorithms rigorously (e.g. MEILI (16)) but focused on their accuracy and F-score, and14
have also focused on data collection without computing downstream metrics.15

Finally, projects that have computed metrics from automated mode inferences have not16
characterised their accuracy (e.g. MatkaHupi (17), Peacox (18)) or have been rigorously evaluated17
but do not consider the implications to downstream metrics (e.g. MotionTag (19)).18

Statistics and uncertainty19
Work has been done to understand uncertainty and uncertainty propagation in travel demand mod-20
els (20) which found that uncertainty compounds over the stages of a travel demand model, and21
that in general, the predictions made by travel demand models are highly uncertain. Lemp et. al22
(21) found that predictions made by traffic forecasts are also highly uncertain and stresses that23
uncertainty in transportation-related metrics be considered by transportation planners and policy24
makers.25

Most measures of uncertainty for confusion matrices are based on metrics such as accuracy,26
precision, recall, and F-score (22), and multi-class evaluation metrics include balanced accuracy,27
Matthew’s correlation coefficient, and Cohen’s Kappa, described by Grandini et al. (23). Darling28
(24) discusses the sources of uncertainty in classifiers and their estimates of the probability that a29
sample belongs in a certain class.30

Braga-Neto (25) describes how to quantify error for classifiers. There, the expected error31
is the probability of the predicted class and ground truth class being different. This work uses32
probabilities from column-normalized confusion matrices, meaning that ground truth classes were33
conditioned on predicted classes.34

Caelen (26), Tötsch and Hoffman (27), and Barranco-Chamorro (28) take a Bayesian ap-35
proach to the confusion matrix, and use Dirichlet or Beta distributions on each cell of a confusion36
matrix, allowing for uncertainty in the confusion matrix itself. In particular, Caelen demonstrates37
how multinomial distributions can be used to describe confusion matrices. We take that concept38
and apply it in this work.39

Previous work by Allen and Shankari (29) characterized the uncertainty of smartphone-40
sensed, travel-based metrics. There, the uncertainties from mode and trip length were used to char-41
acterize the uncertainty of energy consumption estimates. Research by Kosmacher and Shankari42
(30) also evaluated the accuracy of trip length computations and mode inference.43
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METHODS1
The goal of this work is to provide expected values for a particular measure, and a range of un-2
certainty such that the actual values for that measure typically fall within the range of uncertainty3
from the expected value.4

We start by showing that the problem is an instance of the multinomial distribution and5
illustrate how the related closed form solutions can be used to compute the values. We then verify6
that the spread of predicted values for each mode can be treated as a multinomial through compu-7
tation of the probabilities of certain outcomes. Finally, we determine that using variance, rather8
than standard deviation, as our uncertain range captures the actual measures more reliably.9

Using multinomial distributions to estimate mode-specific uncertainty10
Intuitively, to compute the true count for a mode m given a set of predicted modes and the proba-11
bility of misprediction, we need to sum the estimated count from: (i) trips with predicted mode m12
that were predicted correctly, and (ii) the count from trips with predicted mode 6= m that were the13
result of mispredictions (Figure 1) The mispredictions from trips predicted as m will contribute to14
the true counts of other modes.15

Considering a set of trips with a predicted mode m, if we conceptually think of “flipping16
them over" to find the true mode, the result should correspond to the column corresponding to m17
in the confusion matrix (Pm(true|pred)). Thus, the problem of determining true counts maps well18
to the multinomial distribution.19

Concretely, we meet all the criteria for a multinomial distribution:20
1. k discrete categories - these are the set of potential modes,21
2. fixed probability for each category - this is the Pm(true|pred) from the confusion matrix22

column for m, and23
3. independent trials - mode inference algorithms typically work at the trip level, so the24

probability of a trip using mode m doesn’t depend on any other trips.25
Once we have computed the set of true counts for each predicted mode, we can sum them26

mode-wise to obtain the final true counts (Figure 1).27
Formally, for a given confusion matrix, say that θp is the vector of column-normalized28

probabilities for predicted mode p. θt p then is P(actual = t|predicted = p). Nt p is the value of the29
cell where actual mode = t and predicted mode = p, and np is the predicted value for mode p. The30
closed form solution for mean and variance can then be used to say that for each Nt p:31

E[Nt p] = niθt p (1)
and
Var[Nt p] = niθt p(1−θt p) (2)
Then, the actual value for mode j can be estimated by adding E[Nt p] for all predicted modes p, and
the variance is the sum of Var[Nt p] for all predicted modes p:

E[Nt ] =
m

∑
p=1

E[Nt p] =
m

∑
p=1

npθt p =
m

∑
p=1

npP(actual = t|predicted = p) (3)

Var[Nt ] =
m

∑
i=1

Var[Nt p] =
m

∑
p=1

npθt p(1−θt p)

= npP(actual = t|predict = p)(1−P(actual = t|predict = p)

(4)

Given the high quality confusion matrix probabilities shown in Table 2 and the correspond-32



Lim, Allen, Shankari 6

FIGURE 1 Worked example, using mode counts, of the method for computing the expected
value (top) and variance (bottom) given: (i) predicted mode counts and (ii) P(true|pred) for
each mode. For each mode, we use the probabilities to determine the distribution of true
counts given predicted counts. Then we add up the true counts from each predicted mode
to get the total true count. For variances, we use a similar method in which we sum up the
variances from each predicted mode.
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ing predictions shown in Table 3, the expected count per mode and variance per mode is found per1
the steps in Figure 1.2

1. We determine θp for each mode3
2. We find E[Nt p] and Var[Nt p] for all predicted modes p using Equation 1 and Equation 24
3. We re-group E[Nt p] and Var[Nt p] by the true mode t.5
4. We find E[Nt ] and Var[Nt ] by summing all E[Nt p] for a true mode t.6
5. Example: E[Nbike] = 4521.2+81.8+123.2 = 4726.443.7
6. Example: Var[Nbike] = 440.2+78.5+118.2 = 636.98
Since multinomial distributions work for discrete values, we converted our distance data9

from meters to the nearest kilometer, so that the inputs are integers usable with multinomial distri-10
butions. Then the same process as outlined in Section 4.1 is used.11

Verifying multinomial characteristics of data12
To justify using the closed form solutions for the mean and variance of a multinomial distribution,13
we verify that our data can be represented by multinomial distributions.14

Given that five trips were predicted as bike, three trips were predicted as walk, and two trips15
were predicted as car, and using an arbitrary count-based, column-normalized confusion matrix,16
we manually calculated the probability of three cases:17

1. There were no trips with a ground truth mode of bike18
2. There was one trip with a ground truth mode of bike19
3. There were ten trips with a ground truth mode of bike20
Using the same set of probabilities and predictions, we then found the probability of each of21

the three cases occurring using multinomial distributions. One multinomial distribution was made22
for each predicted mode, according to the corresponding column of probabilities. Using the prob-23
ability mass functions of the respective multinomial distributions, we found the probabilities for24
all possible instances that would fulfill each case requirement. We then added these probabilities25
up for each case.26

The probabilities calculated manually and the probabilities calculated using multinomial27
distributions matched, indicating that our data could indeed be represented by multinomial distri-28
butions.29

Effects of probability on using standard deviation as an uncertain range30
Say that we have two multinomials, each with a different probability distribution, which we refer31
to as PD1 and PD2. In the example below, probability distributions are a set of three probabilities32
that describe the likelihood of a trial falling into each of three categories, which we generally refer33
to as category A, category B, and category C.34

Even if PD2 is fairly close to PD1, the difference between the expected values generated35
from PD1 and PD2 falls outside the range of one standard deviation of the data generated from36
PD1 if PD1 and PD2 are not extremely similar. Table 1 shows an example of the difference in37
expected values for category A, Di f f (A), and the corresponding SD1 for category A as the differ-38
ence between PD1 and PD2 increase. In this case, 10000 random variables were sampled from two39
multinomial distributions characterized by PD1 and PD2, with 1000 trials.40

PD1 is kept constant, at [0.8, 0.05, 0.15]. PD2 is varied from PD1 by a difference of 0.01,41
0.025, 0.05, 0.075, 0.1, 0.2, 0.3, and 0.4. The difference between expected values begins to fall42
outside of one standard deviation of PD1 at a difference between probabilities of 0.025. It begins43
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to fall outside of the range of one variance at a difference between probabilities of 0.2.1

PD2 Di f f (A) SD1(A) Var1(A)
[0.8, 0.05, 0.15] 0.0352 12.790718 163.602475

[0.79, 0.05, 0.16] 9.9293 12.607993 158.961494
[0.775, 0.05, 0.175] 25.1165 12.702414 161.351324

[0.75, 0.05, 0.2] 49.6176 12.593497 158.596171
[0.725, 0.05, 0.225] 75.0212 12.742726 162.377065

[0.7, 0.05, 0.25] 99.7538 12.721244 161.830042
[0.6, 0.05, 0.35] 199.9392 12.590705 158.525852
[0.5, 0.05, 0.45] 300.0050 12.658316 160.232969
[0.4, 0.05, 0.55] 399.6070 12.636061 159.670036

TABLE 1 Difference between expected values of multinomials for the specified and their
corresponding standard deviations and variances probabilities

This means that if we have two datasets that are extremely similar, or even if we are using2
two halves of the same dataset, it is unlikely that the actual value is captured within one standard3
deviation from the expected value. Additionally, if probability distributions vary too greatly, the4
variance will also fail to capture the actual value.5

Variance as a more appropriate measure of uncertainty6
Since one standard deviation fails to capture the difference in expected means even when probabil-7
ity distributions are extremely similar, in an ideal case the actual measures still fail to be captured8
within the range of one standard deviation. To demonstrate this, we use a confusion matrix for9
a high quality classifier (Table 2) and mode count predictions based on the predicted mode dis-10
tribution from that high quality confusion matrix (Table 3). Evidently, even in the most optimal11
scenario, it is possible to have expected values that are over 3 standard deviations from the actual12
values, even though the percent relative errors between the two never exceed 3% (top of Table 4).13

Bike Walk Car
Bike 0.902632 0.041041 0.041150
Walk 0.047571 0.910410 0.048334
Car 0.049798 0.048549 0.910516

Bike Walk Car
Bike 0.800908 0.108108 0.107698
Walk 0.052092 0.206880 0.748015
Car 0.147001 0.685012 0.144287

TABLE 2 High quality confusion matrix probabilities (left) and lower quality confusion ma-
trix probabilities (right) where rows represent ground truths and columns represent predic-
tions

Bike Walk Car
Predicted count 5009 1995 2996

Bike Walk Car
Predicted count 4982 2018 3000

TABLE 3 Predicted counts used with high quality confusion matrix (left) and with lower
quality confusion matrix (right)
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Actual
Value

Expected
Value

SD from
actual

Difference Relative
pct error

Variance

Bike 4762 4726.443 -1.408 -35.557 -0.746 636.958
Walk 2243 2199.361 -1.900 -43.639 -1.945 527.476

H
ig

h
qu

al
ity

C
M

Car 2995 3074.196 3.307 79.196 2.644 573.271
Bike 4733 4531.376 -5.641 -201.623 -4.260 1277.276
Walk 2179 2921.048 21.952 742.049 34.055 1142.581

L
ow

er
qu

al
ity

C
M

Car 3088 2547.574 -14.288 -540.426 -17.501 1430.530

TABLE 4 Results from using the high quality confusion matrix and predictions (top) and
lower quality confusion matrix and predictions (bottom)

In the case where a lower quality confusion matrix is used and the predictions are based on1
a different distribution than specified by the lower quality confusion matrix, the range of multiple2
standard deviations is inadequate to capture the actual measure. If we vary the probabilities used3
to find expected values, the actual values can be over even twenty standard deviations away from4
the expected values. Using a range of multiple standard deviations also fails to be effective, as it5
changes case-by-case. For example, after looking at the results using the high quality confusion6
matrix (top of Table 4), the range might be set at four or five standard deviations. However, looking7
at the results with the lower quality confusion matrix (bottom of Table 4), it appears that a more8
appropriate range is somewhere over twenty one standard deviations. Variance as our uncertain9
range, on the other hand, captures the actual values more reliably, even though the relative percent10
error is much higher than when using the high quality confusion matrix.11

EVALUATION AND RESULTS12
Data used13
Three different datasets are used in this work, referred to as MobilityNet, All_CEO, and Durham.14

1. MobilityNet is a publicly available dataset of artificial trips that were created by15
traversing predefined travel routes using predetermined modes of travel (31). MobilityNet16
has distance data available that we use to make distance estimates per mode, but not17
enough trips to use for mode counts.18

2. All_CEO is a dataset of trips that covers 1.5 years of the Colorado Energy Office’s19
CanBikeCO programs in six locations across Colorado, which provided e-bikes to low20
income participants (32), and21

3. Durham is a set of trips from a similar program from Durham, North Carolina.22
Since most current travel diary creation are closed source, we used the open source travel diary23
creation algorithms from the OpenPATH platform to predict the sensed modes in these datasets.24
The algorithms were developed before MobilityNet, All_CEO, or Durham datasets were gener-25
ated using an independent dataset. Note, however, the methods outlined here are independent of26
the travel diary creation algorithm used.27

Assumptions28
To apply our methods to a particular dataset, we:29

• process our data so that user-provided ground truth modes map to sensed modes (Table30
5). Ground truth modes that did not map to sensed modes– such as Scooter share and31
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Skateboard– were removed.1
• assume that mode predictions are independent of each other, which allows us to combine2

variances per mode by addition.3
• assume entries of the column-normalized confusion matrix represent P(actual|predicted)4

sensed mode All_CEO and Durham MobilityNet
bicycling Bikeshare, Pilot ebike, Regular Bike BICYCLING, E_BIKE

bus Bus, Free Shuttle BUS
car Gas Car, drove alone, Gas Car, with

others, Taxi/Uber/Lyft, E-car, drove
alone, E-car, with others

CAR

train Train TRAIN, LIGHT_RAIL
walking Walk WALKING

TABLE 5 Mode mappings to sensed modes for All_CEO, Durham, and MobilityNet.

Metrics and goals5
Now we want to validate whether our method (Section 4.1) provides a range of uncertainty that6
capture actual values for these real-world datasets. We use the variance (Section 4.4) as our bounds.7
This means that for each mode, the actual value should be within one variance of the expected8
value.9

Evaluation procedure10
The ground truth mode for a trip is the primary mode of a trip; that is, the user-provided mode used11
to travel the farthest during that trip. Before count or distance confusion matrices are constructed12
for any dataset, we determine the primary mode for each trip and use it as the ground truth mode.13
We refer to the dataset used to create confusion matrices for our calculations as the computation14
dataset. The dataset that we obtain our mode predictions from is referred to as the evaluation15
dataset.16

We use three different methods– evaluating against MobilityNet, self-validation, and17
cross validation (Figure 2). When evaluating against MobilityNet, we use MobilityNet’s ar-18
tificial trips as our computation dataset and a dataset that uses real trips, such as All_CEO or19
Durham, as our evaluation dataset. When doing self-validation, we shuffle and split one dataset20
of real trips into two halves, using one as our computation dataset and the other as our evaulation21
dataset. Finally, when doing cross-validation, we use two different datasets with real trip data, such22
as All_CEO or Durham, with one as the computation dataset and the other as the evaluation dataset.23

For readability, plots are split between modes with high counts or distances and modes24
with low counts or distances, and scaled appropriately. This is because some modes were used25
more frequently than others; for example, there were 40606 ground truth car trips in the All_CEO26
dataset, but only 169 ground truth train trips.27

Results and Discussion28
We started with the MobilityNet distance confusion matrix since it was created from artificial29
trips and was not dependent on the travel patterns in any particular region (Figure 3). However, the30
actual and expected values differ significantly in each of the All_CEO and Durham datasets. More31
seriously, given our metrics, none of the actual values are captured by the uncertainty ranges.32



Lim, Allen, Shankari 11

FIGURE 2 The process used for each method.

FIGURE 3 Results of estimating distances when using a confusion matrix from MobilityNet
and predictions from All_CEO (top) and Durham (bottom)
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All_CEO and Durham have more similar confusion matrix probabilities for distances, while1
MobilityNet has a markedly different distribution of probabilities for each sensed mode. For2
example, for the probabilities in the predicted walk column (Figure 4), the largest probabilities for3
All_CEO and Durham are for ground truth modes bicycling and car. For the predicted walk column4
of MobilityNet, bicycling and car ground truth modes have the lowest probabilities. Three out5
of the five MobilityNet predicted walk probabilities also exceed the corresponding All_CEO and6
Durham probabilities by 0.2 or more. As a result, variance calculated from MobilityNet does not7
capture actual values (Section 4.3).8

FIGURE 4 Confusion matrix probabilities used for distances for All_CEO (left), Durham (mid-
dle), and MobilityNet (right)

Given that the MobilityNet results did not match our expectations, we experimented with9
using labeled, real-world data collection instead. These real-world datasets do not have high quality10
ground truth, and do not account for segmentation error, but they are larger and may provide more11
realistic error estimates.12

We experimented with two options, self-validation through splitting a single dataset into13
two parts, and cross-validation through using datasets from two different geographic locations14
(Figure 2). Self-validation gives us a reference for results in an ideal case, since the confusion15
matrix probabilities used are extremely close to the probabilities that describe the data used for16
predictions. Cross-validation allows us to see how our method performs in a realistic scenario,17
where the confusion matrix is from a different program than the predictions.18

These results (Figure 5) are much better, since the actual distances per mode all fall within19
the range of uncertainty from the expected distances. The proportion and size of the uncertain20
ranges per mode are also fairly consistent across results.21
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FIGURE 5 Results of estimating distances with confusion matrices from user-labeled trips:
All_CEO confusion matrix to All_CEO predictions (top), All_CEO confusion matrix to Durham
predictions (middle), Durham confusion matrix to All_CEO predictions (bottom)
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Counts1
The MobilityNet dataset did not have enough trips to be usable for estimating counts. Even if2
there were enough trips, unlike with distance, no high quality granular ground truth for counts3
exists from MobilityNet because there is no method to generate a count-level confusion matrix4
that takes segmentation error into account. So, for counts, we only used the real world datasets5
Durham and All_CEO.6

The results (Figure 6) largely meet our goals, with the actual counts falling within the7
uncertainty range from the expected counts in almost all cases. The lone exception is the train8
case while using the Durham confusion matrix to predict All_CEO trips.9

This is because the distribution of probabilities for the ground truth mode train is drastically10
different between Durham and All_CEO. In the Durham dataset, all 3 ground truth train trips were11
predicted as bicycling or walking, while in the All_CEO dataset, ground truth train trips were12
predicted as each of the five sensed modes at least once. This means that the variance for the mode13
train should be much higher in order to properly represent All_CEO for the ground truth mode14
train, hence why Durham fails to capture the actual counts within the calculated uncertain range.15

Since using Durham as our computation dataset and All_CEO as our evaluation dataset for16
distances met our goals, it may seem unusual that doing the same for counts did not. However, the17
distance travelled by bicycling is more than the distance travelled by walking, which means that18
even though the number of trips for each mode doesn’t change, bicycling contributes more to the19
variance for distance calculations than in the count calculations.20

The calculations for distance and variance are outlined below. For berevity, Var(actual =21
i|predicted = j) is abbreviated as Var(i| j) and P(actual = i|predicted = j) is abbreviated as P(i| j)22
for some modes i and j.23

For counts, the variance calculation is:
Var(train|bicycling)+Var(train|walking)

= nbicycling×P(train|bicycling)× (1−P(train|bicycling))
+nwalking×P(train|walking)× (1−P(train|walking))

= 11388.0×0.000840× (1−0.000840)+26626.0×0.001120× (1−0.001120)
= 9.561706+29.782960

= 39.344667
For distances, the variance calculation is:

Var(train|bicycling)+Var(train|walking)
= nbicycling×P(train|bicycling)× (1−P(train|bicycling))

+nwalking×P(train|walking)× (1−P(train|walking))
= 59503×0.039710× (1−0.039710)∗75133×0.011357× (1−0.011357)

= 2269.034886+843.591857
= 3112.626742

Note how the predicted distance for bicycling is around 80% of the predicted distance for24
walking, even though the predicted count for bicycling is around 40% of the predicted count for25
walking, and how P(train|bicycling) for distances is magnitudes larger than P(train|bicycling)26
for counts. This increase in values leads to a higher variance that captures the actual value for27
distances.28
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FIGURE 6 Results of estimating counts when using the All_CEO confusion matrix on pre-
dictions from All_CEO (top), while using the All_CEO confusion matrix on predictions from
Durham (middle), and the Durham confusion matrix on predictions from All_CEO.



Lim, Allen, Shankari 16

FIGURE 7 Confusion matrix probabilities used for counts for All_CEO (left) and Durham
(right)

CONCLUSION1
The purpose of this work is to provide a measure of uncertainty based on a set of predictions and a2
confusion matrix from some previous mode inference model, regardless of the actual mode infer-3
ence model used. Our method uses column-normalized probabilities from a classifier’s confusion4
matrix and multinomial closed form solutions for mean and variance to give an expected value and5
uncertain range for each sensed mode.6

We tested our method for measures of both counts and distances with three different datasets,7
and found that this method works if the confusion matrix probabilities used are similar to prob-8
abilities from the classifier used to find predictions per mode. Disclaimer: Since our model of9
uncertainty did not capture the true variation, we used the value of the variance calculated from10
that model to add to our estimated mean and get a wider range of uncertainty. The variance we11
add to the mean should not be interpreted as the variance to use for calculations derived from this12
data. This is an area open to improvement; in the future, confusion matrix probabilities could be13
adjusted using some prior mode distribution to more closely resemble the data that the predictions14
come from. This method could also be extended to apply to metrics other than mode count and15
distance travelled per mode.16

When fully implemented, phone-based travel surveys can reduce mode labeling require-17
ments to in turn reduce user burden, and mode usage can be calculated over multiple users and18
over a span of time. The metrics of count and distance can also give insight into the potential19
impact of large-scale infrastructure and transportation decisions, and inform individuals on their20
travel behaviors.21
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